Stressed about Distress? Calibrating Our Way to Quality in Automated Pavement Data Collection

51st Annual Mid-Atlantic Quality Assurance Workshop

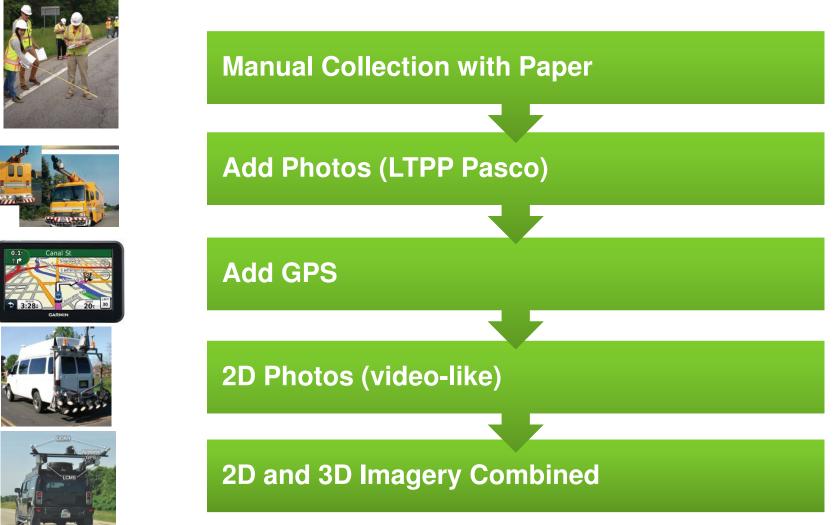
Presentation Overview

- Introduction
- High-Speed Collection and Automated Analysis -Review
- Data Quality and Challenges
- Case Study: DeIDOT Approach and Successes
- Future Trends and Recommendations

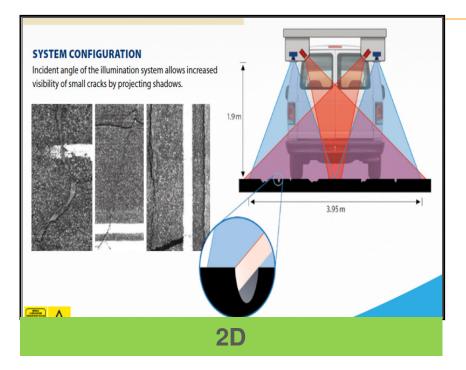
Introduction

9	5

• Kathy Keegan, P.E.

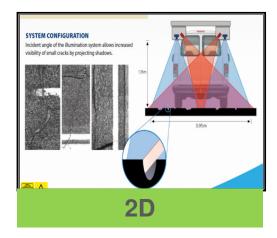

- 23 years experience with high-speed data collection and distress analysis.
- State, municipal, aviation

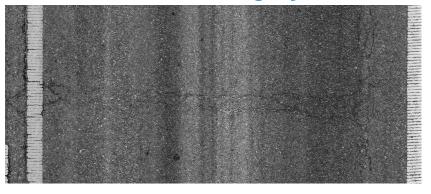
- Tim Miller, P.E.
 - 10 years experience with high-speed data collection and distress analysis.
 - State, municipal, aviation



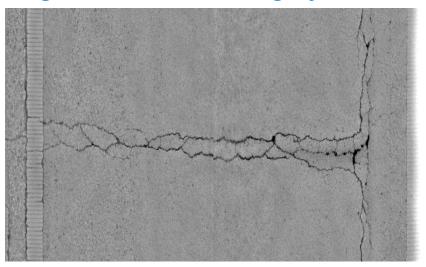
Data Collection Evolution

High-Speed Data Collection




2D + 3D

High-Speed Data Collection



Conventional 2D Imagery - LRIS

High Definition 3D Imagery - LCMS

High Speed Data Collection and Automated Analysis

High-Speed Data Collection

- HPMS
 - IRI, Rut, Fault, %Crack
- Collect additional data in support of broader planning
- State of Practice (FHWA 2015)

High-Speed	Self Collect	Vendor	Automated Distress
All	19	31	7

• 'Semi-automated'

Automated Analysis

- Analysis is driven by a 'standard'
- Standards can vary!
- Manual
 - 'Boots on ground'
 - Subjective
- Semi-Automated
 - Mix of Artificial Intelligence (AI) and subjective
- Automated
 - Fully Al
 - Less subjective
 - Accurate and Precise?

Data Quality and Challenges

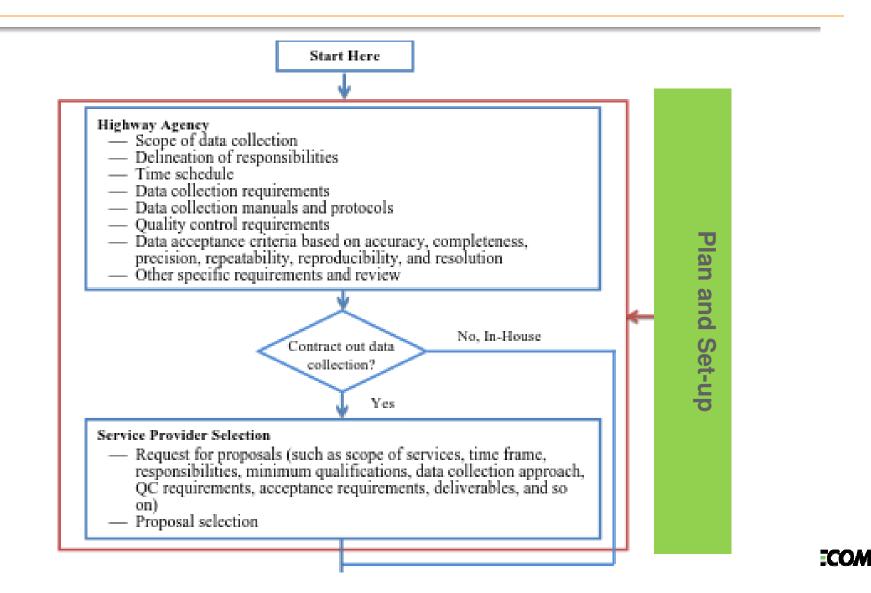
Page

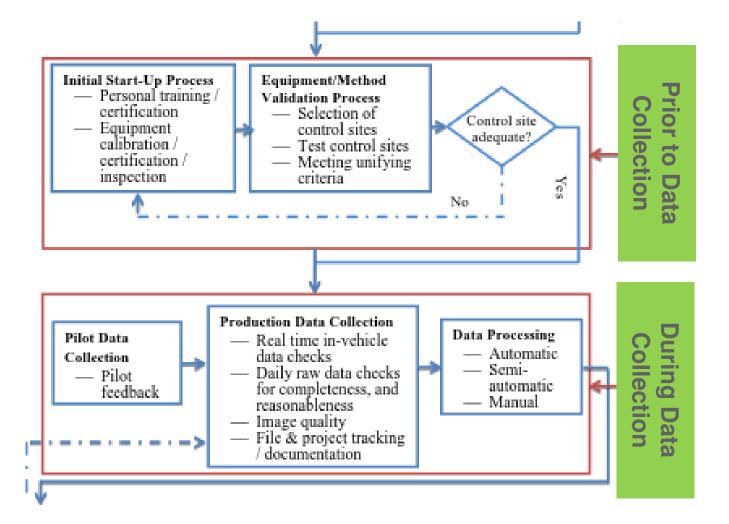
Quality

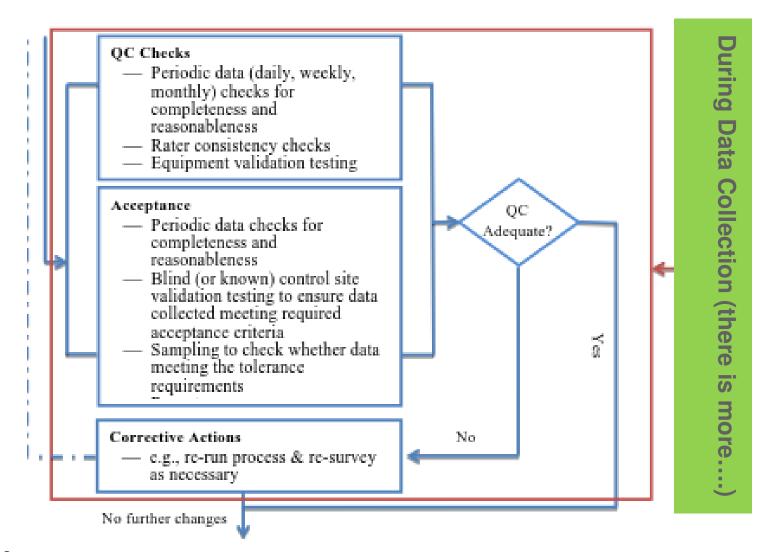
- What is Quality?
 - 'Degree of Excellence' = Accurate and Precise
- Quality Assurance?
 - 'The maintenance of a desired level of quality in a service or product, especially by means of attention to every stage of the process of delivery or production.'

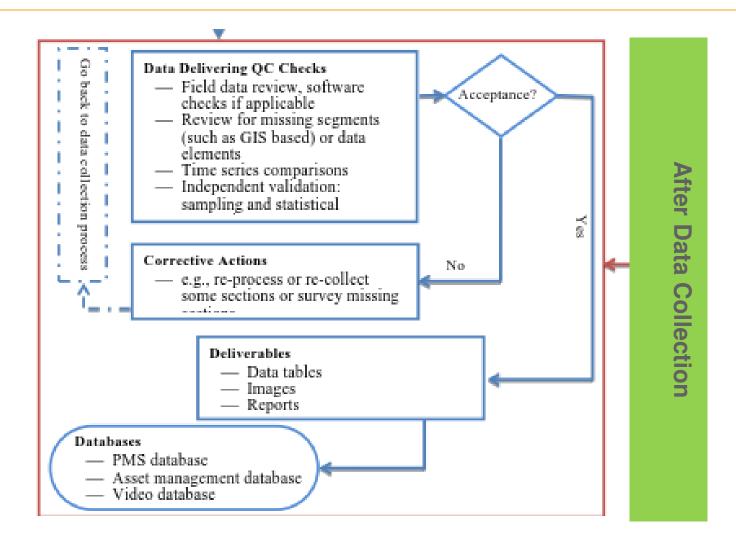
Quality

- Why it matters?
 - Extensive planning and budgeting done as a result of data collected.


- Example:
 - FHWA
 - Individual State
 Protocols


Practical Guide for Quality Management of Pavement Condition Data Collection





Challenges

- Variables
 - Equipment
 - Vendors
 - Collection Protocols
 - Analysis Protocols
 - Software / Analysis Tools
- Technology
 - Continues to advance, so should our approach.
- Interpretation of Data
 - Does resultant data match with expert opinion?
 - Does data yield the correct treatment / timing?

DelDOT Case Study

Page

Acknowledgements

- DelDOT: Sarah McDougall, Rhonda Lewis, Mike Beulah, Sanjay Kumar
- AECOM: Tim Miller, Kathy Keegan, Amir Arshadi, Tamim Khan, Mike Papakostas
- Kercher: Aaron Gerber, Qazi Aurangzeb, Eric Perrone
- Mandli: Mike Richardson, Celly Chrisinger, Larry Mattke, Ryan Well

Project Motivation

- Over decade: change in vendor, collection equipment, and survey method.
- Result: Overall Pavement Condition Index (OPC) values did not make sense (not following expected trends).
- Advancing technology means time for change in approach!

Project Motivation

• Key changes included:

- Transition from 3x3 matrix definitions to a data dictionary encompassing all distress types at all severity levels.
 - Now that we can easily quantify accurately, why don't we?

Severity/Extent	Low	Med	High
Low			\checkmark
Med	\checkmark		
High	\checkmark		

• Undertake calibration exercises to align OPC values, treatment recommendations, and expectations.

Project Objectives

- Narrow the discrepancies between LCMS (3D)-based pavement distress data and network-level treatment selections.
- Select calibration sites and collect baseline measurements
- Reconcile differences in manual and automated surveys
- Adjust PMS index models

Fatigue Cracking Matrix Definitions

- OPC influenced by dominant distress index severity only
- Issues in calculating the most representative OPC for a pavement section
- Limited number of distresses captured per pavement type
- Relies on estimated quantity

Severity Level	Level Low Extent Medium Extent		High Extent	
	Ext: 1 - 9% (wheel path)	Ext: 10 - 25%	Ext: > 25%	
Low Severity	Sev: Fine parallel hairline	Sev: Fine parallel hairline	Sev: Fine parallel hairline	
	cracks	cracks	cracks	
	Ext: 1 - 9% (wheel path)	Ext: 10 - 25%	Ext: > 25%	
Medium Severity	Sev: Alligator crack pattern Sev: Alligator crack patter		Sev: Alligator crack pattern	
	clearly developed	clearly developed	clearly developed	
	Ext: 1 - 9% (wheel path)	Ext: 10 - 25%	Ext: > 25%	
High Severity	Sev: Alligator crack pattern	Sev: Alligator crack pattern	Sev: Alligator crack pattern	
ingh Seventy	clearly developed with	clearly developed with	clearly developed with	
	spalling and/or distortion	spalling and/or distortion	spalling and/or distortion	

Data Dictionary Development

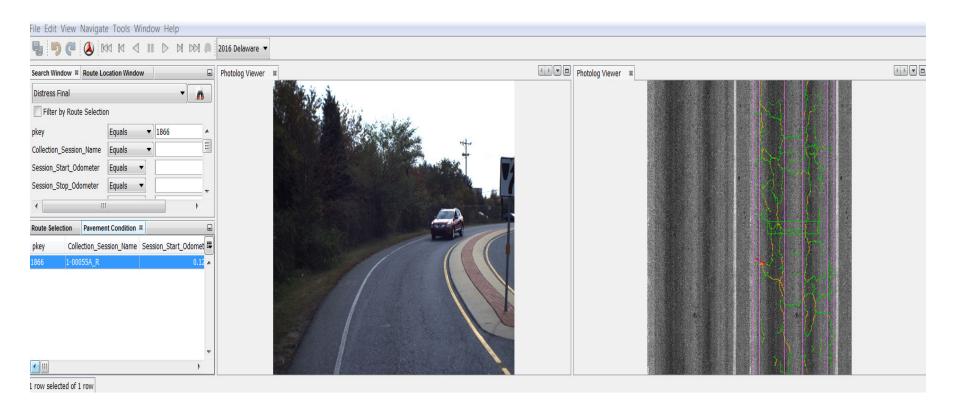
- Defines all distress types and severity levels
- Defines methods of measurement for automated road rating data collection
- Includes four pavement types
- Utilizes actual extent measurements rather than discrete extent ranges (% estimates)

Data Dictionary Revisions

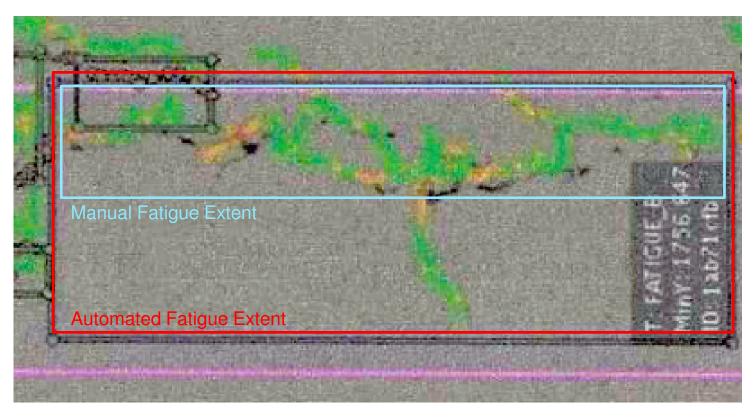
Distance	Pavement Type				М
Distress	Asphalt	Composite	Surface Treated	PCC	Measurement Type
Fatigue Cracking	Н	Н	Н		Square Feet
Transverse Cracking	Н		R		Count
Block Cracking	Н	Н	R		Square Feet
Joint Reflective Cracking		Н			Count
Edge Cracking			Н		Linear Feet
Non-Wheel Path Longitudinal Cracking	R	R			Linear Feet
Patches/Potholes	Н	R	R		Square Feet
Bleeding			Н		Square Feet
Raveling	Н	Н	Н		Square Feet
Crown/Cross-Slope			Н		Percent
Slab Cracking				Η	Slab Count
Joint Deterioration				Η	Joint Count
Joint Seal Loss				Η	Joint Count
Patch Deterioration				Η	Square Feet
Alkali-Silica Reactivity (ASR)				Η	Slab Count

Items denoted as 'H' have been used historically by DelDOT, while items denoted with 'R' are revisions to the process.

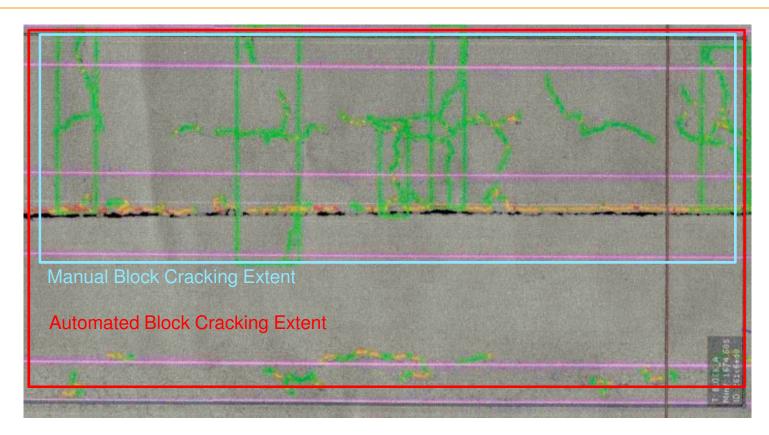
Data Progression


Site Locations

- 30 sites selected for initial calibration
- 4 pavement types
- Range of pavement conditions
- Lengths range from 0.05 to 0.1 mi


Distress Characterization & Image Analysis

• Training and re-training of AI algorithms is critical to accurate distress detection and characterization.


Distress Characterization & Image Analysis

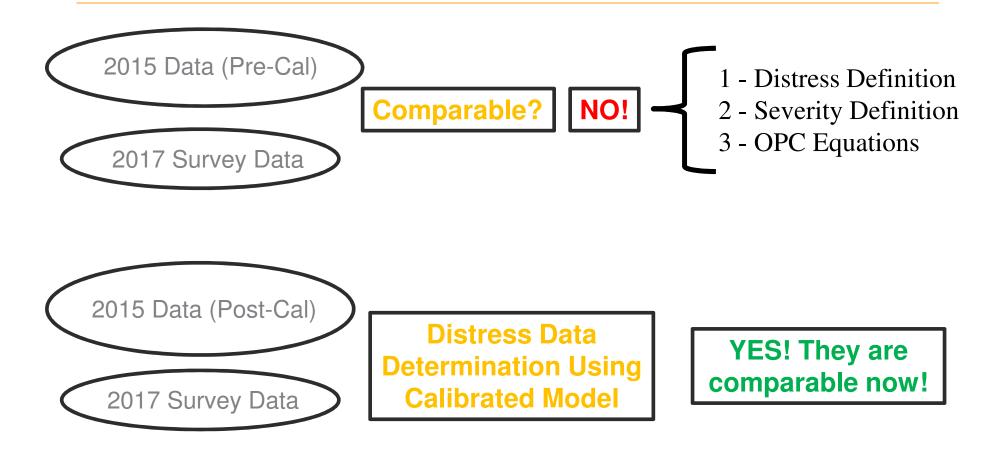
Minimize differences between automated and manual measurements.

Distress Characterization & Image Analysis

Minimize differences between automated and manual measurements.

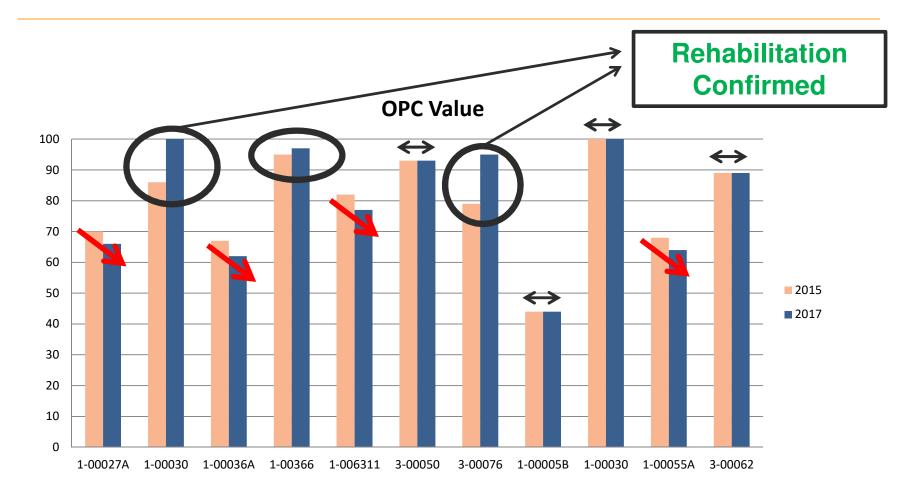
Calibration Iterations

- Adjust wheelpath width in accordance with AASHTO protocols
- Correct lane areas for vehicle deviations
- Adjusted limits for block cracking, transverse cracking, and patching
- Characterized full range of distress types
- Now consider adjustments to OPC calculation



OPC Distress Index Structure

OPC = (Functional Index, Structural Index, Non-Structural Index) The right treatment? Yes = Stop No = Iterate



Data Comparison

Historical Data Check of OPC Values 2015 Survey Post-Calibration vs. 2017 Survey

Key Findings

- **Raveling**: difficult to characterize using automated methods, reduce impact on OPC scores
- **Coarse Texture and Debris**: high macro-texture and roadway debris limits measurement accuracy
- Crack Characterization: challenges in differentiating between block cracking and linear cracking combinations

Key Findings

- Wheel Path Location: expanding WP width to incorporate more fatigue
- Limited Distress Types: inclusion of all distress types in OPC calculation
- Technology Enhancements: raveling, ASR, and joint seal deterioration still pose challenges in automated detection

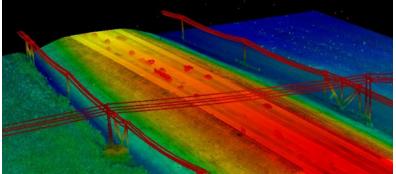
Recommendations

- Expand calibration effort by setting up permanent control sites
- Retrain AI algorithms to reduce differences in raw measurements
- Tweak index models and decision trees
- Establish data acceptance criteria

Future Trends and Recommendations

Future Trends

• Al will continue to advance


- Data collection equipment and methods will change
- Cost to collect and analyze should go down
- Return to the beginning again in our thinking....

Future Trends

- Al will continue to advance
 - Improvements to raveling, texture characterization
 - Improvements in crack characterization
- Data collection equipment and methods will change

Future Trends

- Cost to collect and analyze should go down
- Return to the beginning again in our thinking (keeping it simple)....

Recommendations

- Pavement owner (State, Municipality) should <u>own</u> the protocols for validation, collection, and analysis
- Consider technology advances and vehicle life when purchasing equipment
- Staying current will yield benefits:
 - Cost savings
 - Precision and accuracy

Questions & Discussion

Kathy Keegan, P.E. AECOM katherine.keegan@aecom.com

Timothy Miller, P.E. AECOM timothy.miller@aecom.com

